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Abstract. We study the dynamics of countable state topological Markov chains with holes, where
the hole is a countable union of 1-cylinders. For a large class of positive recurrent potentials and
under natural assumptions on the surviving dynamics, we prove the existence of a limiting condi-
tionally invariant distribution, which is the unique limit of regular densities under the renormalized
dynamics conditioned on non-escape. We also prove the existence of a Gibbs measure on the sur-
vivor set, the set of points that never enter the hole, which is an equilibrium measure for the
punctured potential of the open system. We prove that the Gurevic pressure on the survivor set
equals the exponential escape rate from the open system. These results extend to the non-compact
setting results previously available for finite state topological Markov chains.

1. Introduction

The study of dynamical systems with holes is motivated by the study of systems out of equilib-
rium - systems in which mass or energy is allowed to escape. Since invariant measures cannot be
supported on a bulk of the phase space in such systems, the emphasis becomes a search for physi-
cally relevant conditionally invariant measures, sometimes called quasi-stationary states, which are
invariant under the dynamics conditioned on non-escape.

Given a measure space (X,B,m) and a nonsingular, measurable transformation T , one identifies
a measurable subset H of the phase space X as the hole. Trajectories that are mapped into H
disappear forever and one studies the dynamics conditioned on non-escape. Defining X̊ = X \H
to be the complement of the hole, we study the dynamics of the open system T̊ : X̊ → X on
the sequence of noninvariant domains, X̊n =

⋂n
i=0 T

−iX̊. A probability measure µ on X is called
conditionally invariant if

µ(T−1(A) ∩ X̊1)

µ(X̊1)
= µ(A), for all A ∈ B.

The scaling factor λ := µ(X̊1) is sometimes referred to as the eigenvalue of the measure µ since

the above relation can be iterated to yield µ(T−n(A) ∩ X̊n) = λnµ(A), so that the conditionally
invariant measure necessarily predicts an exponential rate of escape of mass from the open system.

Unfortunately, the existence of conditionally invariant measures with any eigenvalue between 0
and 1 is ubiquitous [DY] and so existence alone becomes meaningless. Rather, one focuses on the

limit points of the sequence T̊n∗ m

m(X̊n)
, where m is a reference measure of interest and the operator

T̊n∗ is defined by T̊n∗ m(A) = m(T−n(A) ∩ X̊n), ∀A ∈ B. Under certain assumptions, the limit of
such a sequence is a conditionally invariant measure and is independent of the initial distribution
drawn from a reasonable class of measures. It also predicts a unified exponential rate of escape for
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this same class of initial distributions. In this case, we call such a limiting distribution a physically
relevant conditionally invariant measure.

In probabilistic Markov chains, this type of limiting distribution in the presence of holes (or
absorbing states) is called the Yaglom limit and has been studied in [V] and more recently in
[FKMP]. The study of deterministic systems with holes was initiated by the work of Pianigiani
and Yorke [PY], and since extended to a number of hyperbolic systems, beginning with those that
admit finite Markov partitions: expanding maps on Rn [PY, CMS1]; Smale horseshoes [C1]; finite
state topological Markov chains [CMS2]; Anosov diffeomorphisms [CM1, CM2, CMT1, CMT2]; and
billiards with convex scatterers satisfying a non-eclipsing condition (which makes the open system
an Axiom A diffeomorphism) [LM]. These results were then extended to hyperbolic systems without
Markov partitions, including piecewise expanding maps of the interval [K, BC, LiM, D1]; certain
classes of unimodal maps [D2, BDM]; and more general dispersing billiards [DWY, D4], including
those with corner points [D3]. All the systems listed above admit physically relevant conditionally
invariant limiting distributions and enjoy a unified exponential rate of escape for a large class of
initial distributions.

Recently, there has been interest in open systems exhibiting polynomial rates of escape [DO,
APT, DR], and in particular their connection to slowly mixing systems from non-equilibrium sta-
tistical mechanics [Y]. Such systems exhibit qualitatively different behavior from systems with
exponential escape rates; for example, the limiting distributions obtained by pushing forward and

renormalizing, i.e. the limit points of T̊n∗ m

m(X̊n)
, are not conditionally invariant measures, but rather

singular invariant measures [DF]. Indeed, no physically relevant conditionally invariant measures
can exist for such systems due to the subexponental rate of escape.

Typically, such slowly mixing systems are studied via an induced map on the phase space: One
chooses a subset Y ⊂ X and studies the return map TR : Y → Y , where R is the first return
time to Y . The usual strategy is to prove results for the induced system TR, which has stronger
hyperbolicity than the original map, and then pass those results back to the original system.

In many situations, the return maps can be constructed to admit countable (but not finite)
Markov partitions and their dynamics can be studied via conjugacy to symbolic dynamics, i.e.,
topological Markov chains. Such techniques are very powerful and are by now classical in the
study of dynamical systems. Unfortunately, while finite state topological Markov chains with holes
have been well-studied ([CMS2], see also the recent book [CMSa]), the corresponding results for
countable state chains are so far unavailable. This motivates the present work: To study countable
state topological Markov chains with holes and prove, under a natural set of assumptions and for
a general class of potentials, results analogous to those proved for many of the hyperbolic systems
listed above. Our hope is that this work will provide a standard reference to future studies of open
systems, in particular to those seeking to expand the study of systems with subexponential rates
of escape.

There are several complications in this setting. First, our space is not necessarily locally com-
pact and so several of the function space arguments previously used in open systems have to be
reformulated. Secondly, open systems are not topologically transitive or positive recurrent in the
usual sense1 of the literature (for example [S1]), so one must formulate alternative conditions which
generalize the notions of mixing and recurrence sufficiently to prove strong convergence results for
the open system.

We introduce our topological Markov chain, formulate our assumptions and state our main
theorems in Section 2. Section 3 contains the proofs of some preliminary facts about the spaces
of functions we shall use while Section 4 contains the proof of Theorem 2.1 regarding convergence
of a large class of initial densities to a conditionally invariant measure and a unified exponential

1This is due to the fact that X \H can be decomposed (mod 0) into a disjoint countable union of sets, X \H =

∪∞n=0X̊
n \ X̊n+1, satisfying T (X̊n \ X̊n+1) = X̊n−1 \ X̊n and Tn+1(X̊n \ X̊n+1) ⊆ H.
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rate of escape. In Section 5 we prove a variational principle, along with Theorem 2.2, linking the
escape rate of the open system to the pressure of the closed system restricted to the survivor set,
the singular set of points that never enters the hole.

2. Setting and Main Results

Let S denote the countable state space of the Markov chain, which we take to be a subset of
N, and A the adjacency matrix, i.e. Ai,j = 1 if the transition from state i to state j is permitted
and 0 otherwise. The associated topological Markov chain is defined as the set of all admissible
sequences,

Σ = {x = (x0, x1, x2, . . .) ∈ SN | Axj ,xj+1 = 1, ∀j ≥ 0}.

We denote by σ the one-sided shift on Σ, i.e. σ(x0, x1, x2, . . .) = (x1, x2, . . .).
We endow Σ with the usual separation time metric: Fix θ ∈ (0, 1) and for x, y ∈ Σ, define

dθ(x, y) = θs(x,y), where s(x, y) = min{i ∈ N | xi 6= yi}.

With this metric, the space (Σ, dθ) is complete, but may not be compact when S is infinite. Indeed,
it is not even locally compact unless #{k ∈ S | As,k = 1} < ∞, for each s ∈ S. In what follows,
we will not assume that Σ is locally compact.

We will denote cylinder sets in Σ in the usual way,

[i0, . . . , in−1] = {x ∈ Σ | xk = ik for k = 0, 1, . . . , n− 1}.

A cylinder of length n is called an n-cylinder. Cylinders are both open and closed as sets and form
a basis for the metric topology on Σ.

We will assume that our topological Markov chain is toplogically mixing:

∀i, j ∈ S ∃Nij ∈ N : ∀n ≥ Nij σ
−n([i]) ∩ [j] 6= ∅.

A topological Markov Chain satisfies the big images and preimages property (BIP) if there exists
a finite set Λ ⊂ S such that

∀s ∈ S,∃i, j ∈ Λ such that As,iAj,s = 1.

2.1. Introduction of the Hole and Mixing for the Open System. We assume that our hole
H is a countable union of 1-cylinders in Σ, i.e. H = ∪i∈SH [i], for some subset SH ⊂ S. Denote

the complement of the hole by Σ̊ = Σ \H; more generally, Σ̊n = ∩nk=0σ
−k(Σ \H), denotes the set

of points which have not entered H by time n. The dynamics of the open system is defined by
σ̊ = σ�Σ̊1 and its iterates, σ̊n = σn�Σ̊n .

Topological transitivity and mixing on general open sets do not make sense for open systems,
yet we are able to formulate a condition on 1-cylinders which ensures that the open system is not
split into disjoint components by the introduction of the hole. We assume that our open system
satisfies the following condition.

(H) There exists a finite set ΛH ⊂ S \ SH such that

(a) for each s ∈ S \ SH , there exists j, k ∈ ΛH such that Aj,sAs,k = 1; and

(b) for each k ∈ ΛH , there exists n ∈ N such that σ̊n([k]) = Σ̊.

We remark that when H = ∅, BIP plus mixing imply (H) with ΛH = Λ so that (H) is a natural
adaptation of BIP plus mixing to an open system.



4 M.F. DEMERS, C. IANZANO, P. MAYER, P. MORFE, AND E.C. YOO

2.2. Transfer Operator. A function ϕ : Σ → R is called locally Lipschitz (or locally Hölder
continuous with parameter θ) if

Lip(ϕ) := sup
i∈S

sup
x,y∈[i]
x 6=y

|ϕ(x)− ϕ(y)|
dθ(x, y)

<∞.

Notice that we do not require any regularity between 1-cylinders so that ϕ may not be bounded on
Σ.

Using a locally Lipschitz ϕ, we define the associated transfer operator Lϕ acting on continuous
functions by

Lϕf(x) =
∑

y∈σ−1(x)

f(y)eϕ(y) and its iterates L n
ϕ f(x) =

∑
y∈σ−n(x)

f(y)eSnϕ(y),

where Snϕ =
∑n−1

k=0 ϕ ◦ σk is the nth ergodic sum. We will assume that |Lϕ1|∞ < ∞. It follows
from this plus BIP and mixing that:

• the Gurevic pressure PG(ϕ) is finite [S1, Theorem 1];
• ϕ is positive recurrent [S2, Corollary 2] (see also [MU]);
• there exists a finite conformal Borel measure m, positive on cylinders, such that, dm

dm◦σ =

eϕ−PG(ϕ) [S1, Theorem 4, Proposition 3]

We will define Gurevic pressure in Section 5.3. Since m is finite, we normalize it to be a probability
measure. We may also replace ϕ by ϕ − PG(ϕ) so without loss of generality, we may assume
PG(ϕ) = 0.

When we introduce a hole H comprised of a countable union of 1-cylinders, we define the related
‘punctured’ potential ϕH for the open system by ϕH = ϕ on Σ̊ and ϕH = −∞ on H. Notice that
ϕH is still locally Lipschitz where defined. The associated transfer operator for the open system
and its iterates are given by

L̊ n
ϕ f(x) = L n

ϕ (1Σ̊nf)(x) =
∑

y∈σ̊−n(x)

f(y)eSnϕ(y) for n ≥ 1,

where 1A denotes the indicator function of a set A.
The importance of the operator L̊ϕ from the point of view of the open system stems from the

following relation. Recalling that we have normalized the pressure of ϕ to be 0, we observe,

(2.1)

∫
Σ

L̊ n
ϕ 1 dm =

∫
Σ

L n
ϕ (1Σ̊n) dm =

∫
Σ̊n

1 dm,

due to the conformality of m, so that the iterates of L̊ϕ govern the rate of escape of mass with
respect to m.

We will use interchangeably the notation η(f) =
∫
f dη for a given measure η on Σ.

2.3. Main Results. We denote by L1(m) the set of (complex valued) integrable functions on Σ
and by C0(Σ) the set of bounded continuous functions Σ → C. C0(Σ) is a Banach space equipped
with the norm

|f |∞ = sup{|f(x)| : x ∈ Σ}.
Similarly, define a space of bounded, locally Lipschitz functions on Σ by

Lip(Σ) = {f ∈ C0(Σ) : ‖f‖Lip <∞},
where ‖f‖Lip := |f |∞ + Lip(f). Notice that with this definition, ‖f · g‖Lip ≤ ‖f‖Lip‖g‖Lip. Also,
since m is a probability measure, C0(Σ) ⊂ L1(m).

Since m is conformal with respect to ϕ, Lϕ and L̊ϕ are both bounded linear operators on
L1(m). It follows from the fact that characteristic functions of cylinders are in Lip(Σ) as well as
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the assumption that |Lϕ1|∞ <∞ that L̊ϕ is a bounded linear operator on both C0(Σ) and Lip(Σ).

Indeed, we will prove that L̊ϕ has a spectral gap on Lip(Σ).

Theorem 2.1 (Unique Limiting Distribution). Suppose (Σ, σ) is topologically mixing and satisfies
the BIP property. Let ϕ be a locally Lipschitz potential with |Lϕ1|∞ <∞ and let H be a hole in Σ

satisfying condition (H). Let λ = ρ(L̊ϕ) denote the spectral radius of L̊ϕ on Lip(Σ).

Then there exists a probability density g ∈ Lip(Σ), bounded away from 0 on Σ̊, such that:

a) L̊ϕg = λg and dµ := gdm defines a conditionally invariant probability measure for σ̊ with
eigenvalue λ;

b) the rate of escape from the open system is exponential: log λ = lim
n→∞

1

n
logm(Σ̊n);

c) L̊ϕ has a spectral gap on Lip(Σ): λ is a simple eigenvalue and the remainder of the spectrum

of L̊ϕ is contained in a disk of radius ρ′ < λ;
d) If f ∈ Lip(Σ), then

lim
n→∞

λ−nL̊ n
ϕ f = c(f)g,

for some constant c(f), and convergence is in ‖ · ‖Lip at an exponential rate. Moreover,
c(f) > 0 if and only if ∥∥∥∥∥ L̊ n

ϕ f

|L̊ n
ϕ f |L1(m)

− g

∥∥∥∥∥
Lip

≤ Cτn‖f‖Lip,

for some C > 0 independent of f , and τ = ρ′/λ < 1.

We remark that for conditionally invariant measures to be physically relevant in the sense of
Theorem 2.1(d), one must have convergence (and escape) occurring at an exponential rate. Thus
the assumption of big images and preimages and the analogue for the open system, (H), that
we have formulated are crucial from this point of view. If one weakens these assumptions to, for
example, a positive recurrent potential with finite pressure, then the rate of convergence to equi-
librium for the closed system may be subexponential (see [S1]) and thus there will be no physically
relevant conditionally invariant measures for the open system. For recent results regarding limiting
distributions in open systems with subexponential rates of escape, see [DF].

Next we turn to the survivor set, Σ̊∞ = ∩∞n=0σ
−n(Σ \ H), the zero m-measure set of points

that never enter H. While it may seem that λ is an artifact of the function space Lip(Σ) that we
have chosen to work with, our next theorem demonstrates that this number (which depends on the
potential ϕ) is intrinsic to the open system in that log λ equals the pressure on the survivor set.

Theorem 2.2 (Gibbs Measure and Variational Principle). Let M denote the set of σ-invariant
Borel probability measures on Σ. Under the assumptions of Theorem 2.1, the following hold.

a) log λ = sup

{
hη(σ) +

∫
ϕH dη : η ∈M, η(−ϕH) <∞

}
,

where2 hη(σ) is the measure-theoretic entropy of η.
b) There exists ν ∈M which is realized by the following limit,

ν(f) = lim
n→∞

λ−n
∫

Σ̊n
f g dm for all f ∈ Lip(Σ).

The measure ν is a Gibbs measure for the potential ϕ − log λ, enjoys exponential decay of
correlations, and attains the supremum in the variational principle in (a), i.e. ν satisfies

2Since ϕH�H= −∞, the condition η(−ϕH) <∞ implies that η(H) = 0, and so η(ϕH) = η(ϕ). Since η is invariant,

this in turn implies that the support of η is contained in Σ̊∞.
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the escape rate formula,

log λ = hν(σ) +

∫
ϕH dν.

c) An equivalent characterization of ν is dν = g dmH , where mH is a positive Borel measure

with support equal to Σ̊∞ that is conformal for the potential ϕH − log λ, i.e., λ−1L̊ ∗
ϕmH =

mH .
d) The following criterion holds for convergence to g: if f ∈ Lip(Σ) and f ≥ 0, then

lim
n→∞

L̊ n
ϕ f

|L̊ n
ϕ f |L1(m)

= g ⇐⇒
∫

Σ
f dν > 0,

where the covergence is in Lip(Σ) at an exponential rate.

The role played by the invariant Gibbs measure ν in linking the escape rate with the pressure on
the survivor set is further justification for the assumption (H): Having big images is a necessary
condition for the existence of a Gibbs measure [S1, Theorem 8] (see also [S2, Theorem 1]).

Remark 2.3. Since λn = µ(Σ̊n), the characterization of ν in Theorem 2.2(b) can be restated in
terms of the limit of conditional probabilities,

ν([i0, i1, . . . , ik−1]) = lim
n→∞

µ([i0, i1, . . . , ik−1] | Σ̊n),

for any k-cylinder in Σ. Equivalently, for any f ∈ Lip(Σ), ν(f) = lim
n→∞

Eµ[f | Σ̊n].

3. Function Spaces and Preliminary Estimates

For the remainder of the paper, we fix a potential ϕ satisfying |Lϕ1|∞ <∞ and assume (Σ, σ,H)
satisfies the hypotheses of Theorem 2.1. Our main task will be to prove the existence of a spectral
gap for L̊ϕ, from which most of our other results follow. We begin with a standard distortion
estimate, whose proof we record for completeness.

Lemma 3.1. There exists a constant Cd > 0 such that for all n-cylinders [i0, . . . .in−1], n ≥ 1, and
all x, y ∈ [i0, . . . , in−1],

log

(
eSnϕ(x)

eSnϕ(y)

)
≤ Cddθ(σn(x), σn(y));(3.1) ∣∣∣eSnϕ(x)−Snϕ(y) − 1
∣∣∣ ≤ Cddθ(σn(x), σn(y)).(3.2)

Proof. Fix x, y ∈ [i0, . . . , in−1]. Then

log

[
exp(Snϕ(x))

exp(Snϕ(y))

]
=

n−1∑
i=0

ϕ ◦ σi(x)− ϕ ◦ σi(y) ≤ Lip(ϕ)

n−1∑
i=0

dθ(σ
i(x), σi(y))

= Lip(ϕ)

 n∑
j=1

θj

 dθ(σ
n(x), σn(y)),

and (3.1) follows with constant C ′d = Lip(ϕ)
(

θ
1−θ

)
.

To prove (3.2), note that |ez − 1| ≤ e|z||z| ∀z ∈ R. Setting z = Snϕ(x)−Snϕ(y), using the proof

of (3.1) and noting that dθ(·, ·) ≤ 1, yields (3.2) with constant eC
′
dC ′d. �
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The distortion bound (3.1) together with the conformality of m implies that for any n-cylinder
[i0, . . . in−1] and any x ∈ [i0, . . . , in−1],

(3.3) eSnϕ(x) ≤ eCd m([i0, . . . , in−1])

m(σn([i0, . . . , in−1]))
≤ eCdκ−1m([i0, . . . , in−1]),

where κ = min{m([i]) : i ∈ ΛH} > 0 and ΛH is the finite set in (H).
Since σn is injective on each n-cylinder, these estimates immediately imply that for any f ∈

C0(Σ), x ∈ Σ,

|L̊ n
ϕ f(x)| =

∣∣∣∣∣∣
∑

y∈σ̊−n(x)

f(y)eSnϕ(y)

∣∣∣∣∣∣ ≤ |f |∞eCdκ−1,

where we have used the fact that m is a probability measure, so that L̊ϕ is a bounded, linear
operator on C0(Σ) with spectral radius at most 1. Unfortunately, we need greater regularity for our
function spaces, so we will work in Lip(Σ). Since we are not assuming that Σ is compact or even
locally compact, it may be that the unit ball of Lip(Σ) is not relatively compact in C0(Σ). Instead,
we will use L1(m) as our weak norm. It is a standard fact that the closed unit ball of Lip(Σ) is

relatively compact in L1(m). Before characterizing the spectrum of L̊ϕ on Lip(Σ), we first prove

some greater regularity properties of evolved densities L̊ n
ϕ f .

3.1. A fixed point for the normalized transfer operator. To obtain the spectral decomposi-
tion of L̊ϕ, it will be convenient to first prove the existence of a positive eigenfunction g. To this
end, we define a set of log-Lipschitz probability densities: Given C > 0, let

LC =

{
f ∈ L1(m) | f ≥ 0,

∫
Σ̊
f dm = 1, Lip(log f) ≤ C

}
.

By convention, we set Lip(log f�[i]) = 0 if f ≡ 0 on [i]. Define the normalized transfer operator by

L̊1f =
L̊ϕf

|L̊ϕf |1
, where | · |1 denotes the L1(m) norm. Notice that L̊1 is a nonlinear operator. This

section is devoted to the proof of the following proposition.

Proposition 3.2. Let K = Cd
1−θ . Then L̊1(LK) ⊂ LK and LK contains a function g ∈ Lip(Σ) with

g ≥ 0 and L̊ϕg = λg for λ =
∫

Σ̊1 g dm > 0.

Note that when #(S) = ∞, LK is not compact in L1(m) since the log-Lipschitz constant does
not control the L∞ norm of a function. Thus there are unbounded functions in LK . As the next
several lemmas will show, however, L̊1(LK) ⊂ LK is bounded in C0(Σ) and so it is possible to
define an invariant subset of LK which is compactly embedded in L1(m).

Lemma 3.3. For all f ∈ L1(m) such that Lip(log f) <∞ and all n ≥ 0,

Lip(log L̊ n
ϕ f) ≤ θnLip(log f) + Cd.

Proof. Recall that SH denotes the collection of states in S corresponding to H. For i ∈ SH ,
L̊ n
ϕ f ≡ 0 on [i] for each n ≥ 1.

Now fix i ∈ S \ SH and suppose x, y ∈ [i]. For each n ∈ N, note that σ̊−n(x) and σ̊−n(y)

are in 1-1 correspondence since σ̊n is a bijection from Σ̊n ∩ [j0, j1, . . . jn−1, i] to its image for each
(n + 1)-cylinder [j0, . . . , jn−1, i]. So we may enumerate the elements of σ̊−n(x) = {uj}j∈J and
σ̊−n(y) = {vj}j∈J so that uj and vj lie in the same (n+ 1)-cylinder for each j, and J is the relevant
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index set. Now we estimate,

L̊ n
ϕ f(x) =

∑
j∈J

f(uj)e
Snϕ(uj) ≤

∑
j∈J

f(vj)e
Lip(log f)dθ(uj ,vj)eSnϕ(vj)eCddθ(x,y)

≤ L̊ n
ϕ f(y)e(θnLip(log f)+Cd)dθ(x,y)

where we have used the fact that dθ(uj , vj) = θndθ(x, y). The lemma follows by noting that

Lip(log f) = sup
i∈S

sup
x,y∈[i]

log

(
f(x)

f(y)

)
dθ(x, y)−1.

�

Let MK = {f ∈ L1(m) | f ≥ 0,
∫

Σ̊ f dm ≤ 1, Lip(log f) ≤ K}. Thus LK ⊂MK .

Lemma 3.4. Let K = Cd
1−θ . There exists C1 > 0 such that if f ∈MK , then |L̊ϕf |∞ ≤ C1.

Proof. Suppose f ∈ MK and fix i ∈ ΛH , where ΛH is the finite set of states from (H). Since∫
[i] f dm ≤ 1, there exists y ∈ [i] such that f(y) ≤ m([i])−1. Thus if x ∈ [i], then due to the

regularity of f ,
f(x) ≤ f(y)eKdθ(x,y) ≤ m([i])−1eK .

Let GΛH = ∪i∈ΛH [i]. Recalling that κ = min{m([i]) : i ∈ ΛH}, we have shown that

(3.4) ∀f ∈MK , sup
x∈GΛH

f(x) ≤ κ−1eK .

Note that L̊ϕf ≥ 0 if f ≥ 0 and
∫

L̊ϕf dm =
∫

Σ̊1 f dm ≤ 1. Also, by Lemma 3.3, if Lip(log f) ≤
K, then Lip(log L̊ϕf) ≤ K, so that L̊ϕ(MK) ⊂MK . Thus we may apply (3.4) to L̊ϕf .

Next we turn our attention to proving an upper bound on L̊ϕf(x) for x ∈ Σ \ GΛH . For each
y ∈ σ̊−1(x), let [iy] denote the 1-cylinder containing y. Due to (H)(a), σ̊([iy]) ⊃ [j] for some
j ∈ ΛH . Thus we may organize σ̊−1(x) according to these images. Define for each j ∈ ΛH ,

Pj(x) = {y ∈ σ̊−1(x) : σ̊([iy]) ⊃ [j]}.
For each j ∈ ΛH , choose a point zj ∈ [j]. Note that each y ∈ σ̊−1(x) may be contained in more
than one set Pj(x). But for each y ∈ Pj(x), there exists wy ∈ [iy] such that σ̊(wy) = zj . Now using
the regularity of f and bounded distortion, we estimate

L̊ϕf(x) =
∑

y∈σ̊−1(x)

f(y)eϕ(y) ≤
∑
j∈ΛH

∑
y∈Pj(x)

f(y)eϕ(y)

≤
∑
j∈ΛH

∑
y∈Pj(x)

eKf(wy)e
Cdeϕ(wy) ≤ eKeCd

∑
j∈ΛH

L̊ϕf(zj) ≤ κ−1e2K+Cd#{j ∈ ΛH},

where for the last inequality, we have applied (3.4) to L̊ϕf(zj), since L̊ϕf ∈ MK and zj ∈ GΛH .
This proves the lemma with C1 = κ−1e2K+Cd#{j ∈ ΛH}. �

Lemma 3.5. There exists C2 ∈ (0, 1) such that if f ∈ LK , then
∫

L̊ϕf dm ≥ C2.

Proof. First notice that for f ∈ LK ,

(3.5)

∫
L̊ϕf dm =

∫
Σ̊1

f dm and

∫
Σ̊\Σ̊1

f dm+

∫
Σ̊1

f dm = 1.

Both Σ̊1 and Σ̊\Σ̊1 are unions of 2-cylinders. For each i ∈ S\SH , define ΛH,i = {j ∈ ΛH : Ai,j = 1}.
Also, let [iH] denote the union of 2-cylinders in [i] which map to H. Now∫

Σ̊\Σ̊1 f dm∫
Σ̊1 f dm

≤
∑

i∈S\SH
∫

[iH] f dm∑
i∈S\SH

∑
j∈ΛH,i

∫
[i,j] f dm

≤ sup
i∈(S\SH)∩Qf

supx∈[i] f(x)m([iH])

infx∈[i] f(x)
∑

j∈ΛH,i
m([i, j])

,
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where Qf = {i ∈ S | ∃x ∈ [i] : f(x) > 0} and we have used the fact that for two sequences of

positive terms, ai, bi > 0 with
∑

i bi <∞, then
∑
i ai∑
i bi
≤ supi

ai
bi

.

By conformality there exist ui ∈ [i] and vi,j ∈ [i, j] such that

m([iH]) ≤ eϕ(ui)m(H) and m([i, j]) ≥ eϕ(vi,j)m([j]).

Thus using Lemma 3.1,∫
Σ̊\Σ̊1 f dm∫

Σ̊1 f dm
≤ sup

i∈S\SH
eKeCd

m(H)∑
j∈ΛH,i

m([j])
≤ eK+Cdκ−1m(H) =: B.

On the other hand, using this estimate together with (3.5) yields,

B ≥
1−

∫
Σ̊1 f dm∫

Σ̊1 f dm
=

1∫
Σ̊1 f dm

− 1,

which implies that
∫

L̊ϕf dm ≥ 1/(B + 1). �

As mentioned earlier, LK is not necessarily compact in L1(m) when S is infinite. However,
motivated by Lemmas 3.4 and 3.5, we set C] = C1/C2 and define a subset of LK as follows.

L∞K = {f ∈ LK : |f |∞ ≤ C]}.

Lemma 3.6. L̊1 : L∞K → L∞K is a well-defined continuous map, where K = Cd
1−θ .

Proof. As already noted in the proof of Lemma 3.4, L̊ϕ(MK) ⊂MK . Indeed, L̊1 is continuous on

LK since L̊ϕ is continuous on Lip(Σ) and the normalization factor, |L̊ϕf |1, is uniformly bounded

away from 0 for f ∈ LK by Lemma 3.5. Thus L̊1(LK) ⊂ LK .

Finally, suppose f ∈ L∞K ⊂MK . Then |L̊ϕf |∞ ≤ C1 by Lemma 3.4 and |L̊1f |∞ = |L̊ϕf |∞/|L̊ϕf |1 ≤
C1/C2 = C] by Lemma 3.5. Thus L̊1f ∈ L∞K and L̊1(L∞K ) ⊂ L∞K . �

Proposition 3.7. L∞K is a convex, compact subset of L1(m).

Proof. Recall that the closed balls BR = {f ∈ Lip(Σ) | ‖f‖Lip ≤ R} are compact in L1(m). Thus,
to prove that L∞K is compact, it suffices to show that L∞K is bounded in Lip(Σ) and closed in L1(m).

Claim 1: L∞K is bounded in Lip(Σ).

Suppose f ∈ L∞K . By definition, |f |∞ ≤ C]. Now fix i ∈ S, x, y ∈ [i], x 6= y. Then,

|f(x)− f(y)| = |f(y)|
∣∣∣f(x)
f(y) − 1

∣∣∣ ≤ |f(y)|eKdθ(x,y)Kdθ(x, y),

where in the last inequality, we have used the estimate |ez − 1| ≤ |z|e|z| as in the proof of (3.2) in
Lemma 3.1. Combining this with the bound on |f |∞, we conclude that ‖f‖Lip ≤ (KeK + 1)C] for
all f ∈ L∞K .

Claim 2: L∞K is closed in L1(m).

Suppose f is a limit point of L∞K with respect to the topology of L1(m). Since L∞K is bounded in
Lip(Σ), it follows that f ∈ Lip(Σ) and thus f is continuous. Fix (fn)n∈N ⊆ L∞K such that fn → f
pointwise a.e. and in L1(m). Then

∫
Σ f dm = 1. Let G = {x ∈ Σ | fn(x)→ f(x)}.

Since m(Σ \ G) = 0 and m is positive on cylinders, G is dense in Σ. Since 0 ≤ fn(x) ≤ C], it
follows from the continuity of f and the density of G that 0 ≤ f(x) ≤ C] for all x ∈ Σ.

Now fix [i] and suppose x, y ∈ G∩ [i]. Then fn(x) ≤ fn(y)eKdθ(x,y) for each n ∈ N. We conclude

by taking limits that f(x) ≤ f(y)eKdθ(x,y).

Suppose x, z ∈ [i]. By density of G, we can fix (y(k))k∈N, (v
(k))k∈N ⊆ G ∩ [i] such that

limk→∞ y
(k) = x and limk→∞ v

(k) = z. The previous paragraph implies f(v(k)) ≤ f(y(k))eKdθ(y(k),v(k))
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for each k ∈ N. Since f is continuous, we may take the limit as k → ∞ to conclude that
f(z) ≤ f(x)eKdθ(x,z).

We have shown that for x, z ∈ [i], then

| log f(x)− log f(z)| ≤ Kdθ(x, z).

Thus Lip(log f) ≤ K and so f ∈ L∞K . This proves that L∞K is closed in L1.

Claim 3: L∞K is convex.

Suppose f, h ∈ L∞K and t ∈ [0, 1]. Then tf + (1 − t)h ∈ Lip(Σ) and 0 ≤ tf + (1 − t)h ≤ C] by
convexity of [0, C]]. Similarly,

∫
Σ tf + (1− t)h dm = 1. It remains to show that Lip(log(tf + (1−

t)h)) ≤ K.
Fix i ∈ S and x, y ∈ [i]. If either f or h is 0 on [i], then the required inequality is trivial. So

assume f, h 6= 0 on [i]. Then

tf(x) + (1− t)h(x)

tf(y) + (1− t)h(y)
≤ max

{
tf(x)

tf(y)
,
(1− t)h(x)

(1− t)h(y)

}
= max

{
f(x)

f(y)
,
h(x)

h(y)

}
≤ eKdθ(x,y),

since f, h ∈ L∞K . Taking the appropriate suprema proves Lip(log(tf + (1− t)h)) ≤ K. �

Collecting these results, we are ready to prove Proposition 3.2.

Proof of Proposition 3.2. By Lemma 3.6, the restriction L̊1 : L∞K → L∞K is a well-defined continuous
map. Since L∞K is a convex, compact subset of L1(m), it follows from the Schauder-Tychonoff

theorem that L̊1 has a fixed point in L∞K .

Let g ∈ L∞K be such that L̊1g = g. It follows that L̊ϕg = λg, where

λ =

∫
L̊ϕg dm =

∫
Σ̊1

g dm,

and λ ≥ C2 by Lemma 3.5. Since g ∈ L∞K , we have |g|∞ ≤ C] and by Claim 1 in the proof of

Proposition 3.7, we have Lip(g) ≤ KeKC]. Thus g ∈ Lip(Σ). �

4. Proof of Theorem 2.1

The proof of Theorem 2.1 rests on the fact that as an operator on Lip(Σ), L̊ϕ has a spectral
gap. Much of this section is dedicated to the proof of this fact.

We begin by proving a version of the standard dynamical Lasota-Yorke or Döblin-Fortet inequal-
ity, which provides a bound on the essential spectral radius of L̊ϕ. The novelty of the inequality in
this setting is the presence of the integral factors appearing in both terms of the inequality. This
will enable us to link the essential spectral radius (not just the spectral radius) to the escape rate of
mass from the open system. Note that the presence of these L1 terms is distinct from the analogous
inequalities for topological Markov chains derived from finite state spaces; such inequalities exploit
a C0 bound due to the compactness of Σ that is not available in the present setting.

Proposition 4.1. There exists C0 > 0 such that for all f ∈ Lip(Σ), and all n ≥ 0,

‖L̊ n
ϕ f‖Lip ≤ C0θ

n‖f‖Lip
∫

Σ̊n−1

1 dm+ C0

∫
Σ̊n−1

|f | dm.

Proof. For each x ∈ Σ and y ∈ σ−n({x}), we can find zy,n ∈ [y0, . . . , yn−1] such that

(4.1) |f(zy,n)| ≤ (m([y0, . . . , yn−1]))−1

∫
[y0,...,yn−1]

|f(x)| dm(x).
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We first estimate the C0-norm of L̊ϕf .

|L̊ n
ϕ f(x)| ≤

∑
y∈σ̊−n(x)

|f(y)− f(zy,n)|eSnϕ(y) +
∑

y∈σ̊−n(x)

|f(zy,n)|eSnϕ(y)

≤ θnLip(f)
∑

y∈σ̊−n(x)

eSnϕ(y) +
∑

y∈σ̊−n(x)

|f(zy,n)|eSnϕ(y).

Using (3.3) and recalling that κ = min{m([i]) : i ∈ ΛH}, we estimate

|L̊ n
ϕ f(x)| ≤ θnLip(f)

∑
y∈σ̊−n(x)

eCdκ−1m([y0, . . . , yn−1]) +
∑

y∈σ̊−n(x)

eCdκ−1

∫
[y0,...,yn−1]

|f | dm

≤ eCdκ−1

(
θnLip(f)m(Σ̊n−1) +

∫
Σ̊n−1

|f | dm
)
.

(4.2)

Here we made use of large images and the fact that if y ∈ Σ̊n, then [y0, . . . , yn−1] ⊆ Σ̊n−1. We
conclude that

(4.3) |L̊ n
ϕ f |∞ ≤ C

(
θnm(Σ̊n−1)Lip(f) +

∫
Σ̊n−1

|f | dm
)
.

Next, suppose x, v ∈ Σ with x0 = v0. For each y ∈ σ̊−n(x), let zy,n be as in (4.1). Since
x0 = v0, there is a one-to-one correspondence between y ∈ σ̊−n(x) and w ∈ σ̊−n(v) that preserves
n-cylinders. Now we estimate,

|L̊ n
ϕ f(x)− L̊ n

ϕ f(v)| ≤
∑
y,w

|f(y)− f(w)|eSnϕ(y) +
∑
y,w

|f(w)|eSnϕ(w)

∣∣∣∣∣ eSnϕ(y)

eSnϕ(w)
− 1

∣∣∣∣∣
≤

∑
y∈σ̊−n(x)

θndθ(x, v)Lip(f)eSnϕ(y) +
∑

w∈σ̊−n(v)

|f(w)|eSnϕ(w)eCddθ(x, v).

Summing the series as in (4.2), dividing by dθ(x, y) and taking the appropriate suprema, we obtain

Lip(L̊ n
ϕ f) ≤ 2e2Cdκ−1θnLip(f)m(Σ̊n−1) + e2Cdκ−1

∫
Σ̊n−1

|f | dm.

Adding this to (4.3) concludes the proof of the lemma with C0 = 3e2Cdκ−1. �

The previous proposition and the relative compactness of the closed unit ball of Lip(Σ) in L1(m)

are nearly enough to prove that L̊ϕ is quasi-compact. Due to the loss of mass caused by the hole,

it is still necessary to show that the spectral radius of L̊ϕ is strictly larger than the contraction
provided by Proposition 4.1. This will be done in Section 4.2. In the next section, we prepare some
groundwork by investigating further properties of L∞K .

4.1. Regularity of log-Lipschitz functions. In order to make a Perron-Frobenius argument and
show that L̊ϕ has a spectral gap, we first show that functions in L∞K become positive under the

action of L̊ n
ϕ (Proposition 4.3). This will imply that eigenfunctions of L̊ϕ in L∞K are bounded away

from 0 (Corollary 4.4). We begin by proving a combinatorial result about admissible sequences in
the open system.

Lemma 4.2. Suppose (Σ̊, σ̊, H) satisfies (H). Then there exists a finite set Λ′H ⊆ S and N∗ ∈ N
such that ΛH ⊆ Λ′H and ∀j, k ∈ Λ′H , ∀n ≥ N∗ ∃a1, . . . , an ∈ Λ′H such that

Aj,a1Aa1,a2 · · ·Aan−1,anAan,k = 1.
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Proof. We construct Λ′H by adding elements to ΛH . Suppose j, k ∈ ΛH . By (H)(b), there exists
{a1, . . . , an} ⊆ S such that

Aj,a1Aa1,a2 · · ·Aan−1,anAan,k = 1.

Define Λ′j,k = {a1, . . . , an} when j 6= k. In the case when k = j, we can choose a set {b1, . . . , bm} ⊆ S
such that

Aj,b1Ab1,b2 · · ·Abm−1,bmAbm,j = 1

and gcd(n + 1,m + 1) = 1, which also follows as a consequence of (H)(b). Define Λ′j,j =

{a1, . . . , an, b1, . . . , bm} in this case. Let Λ′H = ΛH ∪
(
∪j,k∈ΛHΛ′j,k

)
.

To complete the proof of the proposition, we show that the subshift ΣΛ′H
= {x ∈ Σ | xi ∈ Λ′H}

is topologically mixing. Recall that a topologically transitive TMC is topologically mixing if and
only if there exist states j, k and relatively prime integers p, q such that σ−p([j]) ∩ [j] 6= ∅ and
σ−q([k]) ∩ [k] 6= ∅ (see [A, Section 4.2]).

We claim that ΣΛ′H
is topologically transitive. If j, k ∈ ΛH , then [j, a1, . . . , an, k] ∩ ΣΛ′H

6= ∅,
where {a1, . . . , an} = Λ′j,k. Suppose j ∈ Λ′H \ ΛH and k ∈ ΛH . By (H)(a), we can choose ` ∈ ΛH
such that Aj,` = 1. By construction, we can choose a1, . . . , an ∈ Λ′`,k such that

A`,a1Aa1,a2 · · ·Aan−1,anAan,k = 1.

Thus Aj,`A`,a1Aa1,a2 · · ·Aan−1,anAan,k = 1, with `, a1, . . . an all belonging to Λ′H and so ΣΛ′H
∩

[j, `, a1, . . . , an, k] 6= ∅.
For the case j ∈ ΛH and k ∈ Λ′H \ ΛH , we argue differently due to the asymmetry of (H)(a).

Since k ∈ Λ′H \ ΛH , k must belong to Λ′i,` for some i, ` ∈ ΛH . Thus there exists a1, . . . an ∈ Λ′i,`
such that Ai,a1Aa1,a2 · · ·Aan,k = 1. Then appending this sequence to Λ′j,i, since i, j ∈ ΛH , yields

the required sequence in Λ′H connecting j to k. The case when j, k ∈ Λ′H \ΛH follows by combining
the other two cases and using again (H)(a). Therefore, ΣΛ′H

is topologically transitive.

Finally, note that given j ∈ ΛH , the periodic sequences

x = (j, a1, . . . , an, j, a1, . . . ), y = (j, b1, . . . , bm, j, b1, . . . ),

where Λ′j,j = {a1, . . . , an, b1, . . . , bm} and gcd(n+ 1,m+ 1) = 1, satisfy σn+1(x) = x, σm+1(y) = y.

Therefore, ΣΛ′H
is topologically mixing. Since Λ′H is finite, the proposition follows. �

Note that the set Λ′H given by Lemma 4.2 is not unique: we simply choose one finite set Λ′j,k for

each pair j, k ∈ ΛH . We consider the set Λ′H so constructed as fixed for the remainder of the paper.

Proposition 4.3. There exists N ∈ N and a sequence (Bn)n≥N with Bn > 0 such that for all
f ∈ L∞K and all n ≥ N ,

L̊ n
ϕ f(x) ≥ Bn for all x ∈ Σ̊.

Proof. Fix f ∈ L∞K . Choose j = j(C]) ∈ N such that
∑

i>jm([i]) < 1
2C]

. Then since |f |∞ ≤ C], we

have
∫
∪i>j [i] f dm < 1

2 .

Since
∫

Σ̊ f dm = 1, there exists i0 ∈ S \ SH with i0 ≤ j(C]) such that

1

m([i0])

∫
[i0]
f dm ≥ 1

2
.

Due to the log-regularity of f , it follows that f(y) ≥ 1
2e
−K for all y ∈ [i0].

By (H), there exists Ni0 such that σ̊n([i0]) = Σ̊ for all n ≥ Ni0 . Thus for each n ≥ Ni0 and x ∈ Σ̊,
there exists wx,n ∈ [i0] such that σn(wx,n) = x. We may increase Ni0 to ensure that Ni0 ≥ N∗,
where N∗ is from Lemma 4.2. Thus using (H)(a) and Lemma 4.2, we may choose wx,n so that

σk(wx,n) ∈
⋃
i∈Λ′H

[i] for all k = 1, . . . , n− 1.
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This implies in particular that L̊ n
ϕ f(x) ≥ 1

2e
−KeSnϕ(wx,n). Now define

Bn,i0 = inf{eSnϕ(y) : σk(y) ∈ [i0] ∪ (∪i∈Λ′H
[i]),∀k = 0, 1, . . . , n− 1}.

It follows from the finiteness of {i0} ∪ Λ′H and bounded distortion that Bn,i0 > 0. Finally, define

N = max{Ni0 : i0 ≤ j(C])} and Bn = 1
2e
−K min{Bn,i0 : i0 ≤ j(C])}.

Then for all n ≥ N and x ∈ Σ̊, L̊ n
ϕ f(x) ≥ Bn as required. �

Proposition 4.3 has an important consequence for the fixed points of L̊1 in LK . This in turn
gives a uniform estimate for the size of λ−nL̊ n

ϕ 1 on Σ̊.

Corollary 4.4. If h ∈ L∞K is a fixed point of L̊1, then inf{h(x) | x ∈ Σ̊} > 0.

Proof. Since h ∈ L∞K , Proposition 4.3 implies L̊ N
ϕ h(x) ≥ BN for all x ∈ Σ̊. Since h is invariant

under L̊1, we have L̊ϕh = αh, where α > 0 satisfies α =
∫

Σ̊1 h dm. It follows that h(x) ≥ BNα−N >

0 for all x ∈ Σ̊. �

Corollary 4.5. There exists C3 > 0 such that for all n ∈ N,

C−1
3 ≤ λ−n(L̊ n

ϕ 1)�Σ̊≤ C3,

where λ ∈ (0, 1) is the eigenvalue corresponding to the fixed point g chosen in Proposition 3.2.

Proof. Fix n ∈ N. By the previous corollary,

∀x ∈ Σ̊ inf{g(x) | x ∈ Σ̊} · λ−nL̊ n
ϕ 1(x) ≤ λ−nL̊ n

ϕ g(x) ≤ |g|∞λ−nL̊ n
ϕ 1(x).

Since λ−nL̊ n
ϕ g(x) = g(x), we obtain the two inequalities:

inf{g(x) | x ∈ Σ̊} · λ−nL̊ n
ϕ 1(x) ≤ λ−nL̊ n

ϕ g(x) ≤ |g|∞

and

inf{g(x) | x ∈ Σ̊} ≤ λ−nL̊ n
ϕ g(x) ≤ |g|∞λ−nL̊ n

ϕ 1(x).

Letting C3 = |g|∞
inf{g(x) |x∈Σ̊}

gives the result. �

Notice that Corollary 4.4 together with the proof of Corollary 4.5 imply that if g, h ∈ L∞K are

two fixed points for L̊1 such that L̊ϕg = λg and L̊ϕh = αh, then α = λ. The next corollary is

used in the proof that L̊ϕ has a spectral gap.

Corollary 4.6. There exists C4 > 0 such that if f ∈ L∞K and there exists an increasing sequence

(nk) ⊆ N such that λ−nkL̊ nk
ϕ f → f pointwise, then inf{f(x) | x ∈ Σ̊} > C4.

Proof. By Proposition 4.3, there exists a N ∈ N and BN > 0 such that L̊ N
ϕ f �Σ̊≥ BN . It follows

that

λ−nkL̊ nk
ϕ f �Σ̊≥ BNλ

−N · λ−(nk−N)L̊ nk−N
ϕ 1 �Σ̊≥ BNλ

−NC−1
3 ,

where in the last inequality we used Corollary 4.5. It follows that f �Σ̊≥ BNλ
−NC−1

3 . �
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4.2. Quasi-Compactness of L̊ϕ. We can use Corollary 4.4 to compute both the spectral radius

and the essential spectral radius of L̊ϕ : Lip(Σ) → Lip(Σ). This proves once and for all that the

essential spectral radius, ρess(L̊ϕ), is strictly less than ρ(L̊ϕ). It turns out this computation also
gives us the escape rate.

Theorem 4.7. λ = ρ(L̊ϕ) = lim
n→∞

m(Σn)1/n. Moreover, ρess(L̊ϕ) ≤ θλ. Thus L̊ϕ is quasi-compact

as an operator on Lip(Σ).

Proof. First, we prove that lim supn→∞m(Σn)1/n ≤ ρ(L̊ϕ). To see this, it is enough to integrate

L̊ n
ϕ 1:

m(Σ̊n) =

∫
Σ

L̊ n
ϕ 1 dm ≤ ‖L̊ n

ϕ 1‖Lip = ‖L̊ n
ϕ ‖Lip.

Taking n-th roots and letting n→∞ shows that lim supm(Σ̊n)1/n ≤ ρ(L̊ϕ).
Next, from Proposition 4.1, we have the following bound for f ∈ Lip(Σ),

‖L̊ n
ϕ f‖Lip ≤ C0

(
θn‖f‖Lip

∫
Σ̊n−1

1 dm+

∫
Σ̊n−1

f dm

)
≤ C0m(Σ̊n−1)‖f‖Lip(θn + 1)

from which it follows that ‖L̊ n
ϕ ‖Lip ≤ 2C0m(Σ̊n−1) and thus ρ(L̊ϕ) ≤ lim infn→∞m(Σ̊n−1)1/n. We

conclude that limn→∞m(Σ̊n)1/n exists and equals ρ(L̊ϕ).

Integrating g over Σ̊n gives:

inf{g(x) | x ∈ Σ̊} ·m(Σ̊n) ≤
∫

L̊ n
ϕ g dm = λn.

By Corollary 4.4, the left hand side is not zero. Taking n-th roots and letting n→∞, we conclude
that

ρ(L̊ϕ) = lim
n→∞

m(Σ̊n)1/n ≤ λ.

Since λ is an eigenvalue, it is bounded above by ρ(L̊ϕ). Thus, λ = ρ(L̊ϕ) = lim
n→∞

m(Σ̊n)1/n.

In addition, we see that

θm(Σ̊n−1)1/n < ρ(L̊ϕ)

if n is sufficiently large. It follows from Hennion’s Theorem [H], Proposition 4.1, and the relative

compactness of the unit ball of Lip(Σ̊) in L1(m) that

ρess(L̊ϕ) ≤ θλ < λ = ρ(L̊ϕ).

Thus L̊ϕ is quasi-compact. �

The previous theorem implies that mass escapes at an exponential rate. In particular,

(4.4) log λ = lim
n→∞

1

n
logm(Σ̊n),

which is item (b) of Theorem 2.1.

4.3. A Spectral Gap for L̊ϕ. Before proving that L̊ϕ has a spectral gap, we prove the following
useful result.

Lemma 4.8. Suppose f ∈ Lip(Σ), inf{f(x) | x ∈ Σ̊} > 0 and
∫

Σ f dm = 1. If there exists a

sequence (nk) ⊆ N and α > 0 such that α−nkL̊ nk
ϕ f → f uniformly, then α = λ and f ∈ L∞K .
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Proof. Since f ∈ Lip(Σ) and inf{f(x) | x ∈ Σ̊} > 0, it follows that Lip(log f) < ∞ (notice also

that f�H≡ 0 since (L̊ n
ϕ f)�H≡ 0 and f is the uniform limit of such functions). By Lemma 3.3,

Lip(logα−nkL̊ nk
ϕ f) ≤ θnkLip(log f) + Cd,

and thus ∃M ∈ N such that
Lip(logα−nkL̊ nk

ϕ f) ≤ K

if k ≥ M . Since inf{f(x) | x ∈ Σ̊} > 0, uniform convergence of α−nkL̊ nk
ϕ f to f implies uniform

convergence of log(α−nkL̊ nk
ϕ f) to log f . Thus Lip(log f) ≤ K.

Next, note that f ∈MK , where MK is defined before Lemma 3.4. Thus by Lemmas 3.4 and 3.5,
we have |L̊1f |∞ ≤ C], and thus L̊1f ∈ L∞K . By Lemma 3.6, L̊ n

1 f ∈ L∞K for all n ∈ N. Notice that

by uniform convergence, α−nk |L̊ nk
ϕ f |1 −−−→

k→∞
|f |1 = 1. Thus,

f(x) = lim
k→∞

α−nkL̊ nk
ϕ f(x) = lim

k→∞
α−nk |L̊ nk

ϕ f |1 L̊ nk
1 f(x) ≤ C], ∀x ∈ Σ̊.

Thus f ∈ L∞K .

Finally, let s = inf{f(x) | x ∈ Σ̊} > 0 and S = sup{f(x) | x ∈ Σ̊} ≤ C]. For each k ∈ N and

x ∈ Σ̊,

(4.5) s

(
λ

α

)nk
λ−nkL̊ nk

ϕ 1(x) ≤ α−nkL̊ nk
ϕ f(x) ≤ S

(
λ

α

)nk
λ−nkL̊ nk

ϕ 1(x).

Using Corollary 4.5, if α < λ, then the first inequality in (4.5) implies the infimum of α−nkL̊ nk
ϕ f on

Σ̊ becomes arbitrarily large, contradicting the uniform convergence to f , which has integral 1. On
the other hand, if α > λ, then the second inequality in (4.5) implies that the limit of α−nkL̊ nk

ϕ f is

0, again contradicting the fact that
∫
f dm = 1. Thus α = λ. �

The following proposition proves λ is the only eigenvalue on the circle {z ∈ C | |z| = ρ(L̊ϕ)}.
Moreover, it follows from this argument that the eigenspace corresponding to λ is one-dimensional.
A key strategy in the proof is adapted from [PY].

Proposition 4.9. Suppose h ∈ Lip(Σ,C) is an eigenfunction of L̊ϕ with corresponding eigenvalue

λei2πφ with λ = ρ(L̊ϕ). Then h = zg for some z ∈ C and φ = 0.

Proof. Let h1 = <(h) and h2 = =(h) denote the real and imaginary parts of h. Equating the real

parts of the equality L̊ n
ϕ h = λnei2πφnh yields,

L̊ n
ϕ h1 = λn(h1 cos(2πφn)− h2 sin(2πφn)).

By properties of circle rotations, there exists an increasing sequence (nk) ⊆ N such that limk→∞ e
i2πφnk =

1. Since |h1|∞, |h2|∞ <∞, it follows that λ−nkL̊ nk
ϕ h1 → h1 uniformly.

Fix α1 > 0 such that
inf{h1(x) + α1g(x) | x ∈ Σ̊} > 0

and let α2 =
∫

Σ(h1 + α1g) dm. Let f0 = α−1
2 (h1 + α1g). Notice that inf{f0(x) | x ∈ Σ̊} > 0 by

choice of α1.
Let ft = (1− t)f0 + tg for each t ∈ R. Let J = {t ∈ R | inf{ft(x) | x ∈ Σ̊} > 0}. J is nonempty

since J ⊇ [0, 1].

To see that J is open, let t ∈ J and set δ = inf{ft(x) | x ∈ Σ̊} > 0. If |s−t| < δ
3 min{ 1

|f0|∞ ,
1
|g|∞ },

then for x ∈ Σ̊,

fs(x) = ft(x) + (t− s)f0(x) + (s− t)g(x) ≥ δ − δ
3|f0|∞ f0(x)− δ

3|g|∞ g(x) ≥ δ
3 ,

and we conclude that fs ∈ J .
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We claim that J is also closed. Suppose t ∈ R is a limit point of J . Fix (tj) ⊆ J such that

tj → t. Let fj = ftj . For each j ∈ N, inf{fj(x) | x ∈ Σ̊} > 0,
∫

Σ fj dm = 1, and λ−nkL̊ nk
ϕ fj → fj

uniformly as k → ∞. By Lemma 4.8, it follows that (fj)j∈N ⊆ L∞K . Moreover, fj → ft uniformly
since

|ftj (x)− ft(x)| ≤ |tj − t|(|f0|∞ + |g|∞), ∀x ∈ Σ.

Thus, since L∞K is closed in L1(m), we conclude that ft ∈ L∞K .

Since λ−nkL̊ nk
ϕ ft → ft uniformly, it follows by Corollary 4.6 that inf{ft(x) | x ∈ Σ̊} > 0.

Therefore t ∈ J and we conclude that J is closed. It follows that J = R.
Suppose x ∈ Σ̊. We have shown that

∀t ∈ R (1− t)f0(x) + tg(x) > 0,

which implies that f0(x) = g(x). On the other hand, if x ∈ H, then h(x) = 0 and thus f0(x) = 0.
We conclude that f0 = g.

It follows that h1 = (α2 − α1)g. Moreover,

(α2 − α1)g = λ−1L̊ϕh1 = (α2 − α1)g cos(2πφ)− h2 sin(2πφ),

which implies that h2 = βg for some β ∈ R. It follows that h = (α2 − α1 + iβ)g and

L̊ϕg = L̊ϕ

(
(α2 − α1 + iβ)−1h

)
= λei2πφg

so that λg = λei2πφg. We conclude that φ = 0. �

Finally, we prove that λ is an eigenvalue of L̊ϕ of algebraic multiplicity 1.

Proposition 4.10. The algebraic multiplicity of λ is 1.

Proof. It follows directly from Proposition 4.9 that the dimension of the eigenspace Eλ correspond-
ing to λ is one. Thus if λ has a non-trivial Jordan block, there must exist h ∈ Lip(Σ) such that

(L̊ϕ − λ)h = g. Iterating this equation, we obtain

L̊ n
ϕ h = nλn−1g + λnh.

Note also that
∀x ∈ Σ̊, ∀n ∈ N − C3|h|C0 ≤ λ−nL̊ n

ϕ h(x) ≤ C3|h|C0 ,

where C3 is from Corollary 4.5. Fix x ∈ Σ̊. Then g(x) > 0 and combining the two previous
inequalities, we must have

∀n ∈ N − C|h|C0 ≤ nλ−1g(x) + h(x) ≤ C|h|C0 ,

which is impossible.
Therefore, (L̊ϕ − λ1)h = 0 from which we conclude that h ∈ Eλ, i.e. h is a multiple of g. Thus

λ has no Jordan block. �

Since ρess(L̊ϕ) < ρ(L̊ϕ) = λ, Propositions 4.9 and 4.10 together imply that L̊ϕ has a spectral
gap. We are now ready to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Let g be the eigenfunction of L̊ϕ with eigenvalue λ given by Proposition 3.2.
The fact that g ∈ L∞K together with Corollary 4.4 prove the initial statement of Theorem 2.1.

The fact that L̊ϕg = λg together with the conformality of the measure m as expressed in (2.1)
proves item (a) of the theorem. Item (b) follows from (4.4) as already noted in Section 4.2. Item
(c) is proved in Propositions 4.9 and 4.10.

It remains to prove item (d) of the theorem. Since L̊ϕ has a spectral gap, we let Πλ : Lip(Σ)→
Lip(Σ) be the projection onto Eλ, which is simply the span of g, and write

L̊ϕ = λΠλ +R,
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where R is a bounded linear operator on Lip(Σ) with spectral radius strictly less than λ and
R ◦Πλ = Πλ ◦R = 0.

Define W = Π−1
λ ({0}). Since Πλ is a projection, we have the following decomposition

Lip(Σ) = Eλ ⊕W.

It follows that every Lipschitz function f has a unique decomposition

f = c(f)g + w,

where c(f) ∈ C and w ∈W. We shall see that the linear functional c has special properties. Note
that continuity of Πλ implies W is a closed subspace of Lip(Σ). Also note that both Eλ and W are

invariant under L̊ϕ.

Lemma 4.11. λ−nL̊ n
ϕ → Πλ in the norm topology of Lip(Σ).

Proof. Fix ε > 0 such that ρ(R) + ε < λ. Choose M ∈ N such that ‖Rn‖1/nLip < ρ(R) + ε if n ≥ M .

If f ∈ Lip(Σ) and n ≥M , then

‖λ−nL̊ n
ϕ f −Πλ(f)‖Lip ≤ λ−n‖Rn‖Lip · ‖f‖Lip <

(
ρ(R) + ε

λ

)n
‖f‖Lip.

�

Lemma 4.12. c : Lip(Σ)→ C is a bounded linear functional.

Proof. For f ∈ Lip(Σ), write f = c(f)g + w. For each n ∈ N,

λ−nL̊ n
ϕ f = Πλf + λ−nRnf and λ−nL̊ n

ϕ f = c(f)g + λ−nRnw.

Then Lemma 4.11 implies

c(f) =

∫
Σ

Πλ(f) dm.

This together with the fact that Πλ is a bounded linear operator proves the lemma. �

Lemmas 4.11 and 4.12 imply the first statement of item (d). The proof of Lemma 4.12 also
implies that

c(f) = lim
n→∞

λ−n
∫

Σ̊n
f dm,

since
∫

Σ̊n f dm =
∫

L̊ n
ϕ f dm.

Lemma 4.13. For f ∈ Lip(Σ), c(f) > 0 if and only if
L̊ n
ϕ f

|L̊ n
ϕ f |1

→ g in Lip(Σ).

Proof. First, consider the case when c(f) 6= 0. Then

lim
n→∞

L̊ n
ϕ f

|L̊ n
ϕ f |1

= lim
n→∞

(
L̊ n
ϕ f

λn

)(
|L̊ n

ϕ f |1
λn

)−1

=
c(f)g

|c(f)|
.

Thus, limn→∞
L̊ n
ϕ f

|L̊ n
ϕ f |1

= g iff. c(f) > 0 in this case.

Now suppose c(f) = 0. Then f ∈ W. Since W is a L̊ϕ-invariant subspace, it follows that
L̊ n
ϕ f

|L̊ n
ϕ f |1

∈W for all n ∈ N. Since W is closed, any limit point of

(
L̊ n
ϕ f

|L̊ n
ϕ f |1

)
n∈N

is in W. We conclude

that g is not a limit point of the sequence. �

Lemma 4.13 completes the proof of item (d) of Theorem 2.1. �
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5. Gibbs Measure and Variational Principle

We next turn our attention to the survivor set, Σ̊∞ =
⋂∞
n=0 σ

−n(Σ̊), and the proof of Theorem 2.2.

We will begin by showing that the functional c(·) induces a measure mH , supported on Σ̊∞,
for which

∫
Σ f dmH = c(f) whenever f ∈ Lip(Σ). We will then show that mH is conformal with

respect to the potential ϕH − log λ. Recall that 1A denotes the indicator function of the set A.

Proposition 5.1. The linear functional c induces a finite, positive Borel measure mH , which
satisfies

mH([i0, . . . , in−1]) = c(1[i0,...,in−1])

for all cylinder sets [i0, . . . , in−1].

Proof. Let C ′ denote the collection of cylinders in Σ. Since S is infinite, C ′ need not be a semi-
algebra in general. We define a semi-algebra by first introducing the notion of a generalized n-
cylinder. Given i0, i1, . . . , in−2 ∈ S and k ∈ N ∪ {0}, we define a generalized n-cylinder by,

[i0, i1, . . . , in−2; k] =
⋃
j≥k

[i0, i1, . . . , in−2, j].

Note that if k = 0, then [i0, i1, . . . , in−2; k] = [i0, i1, . . . , in−2] so that every (n−1)-cylinder is a
generalized n-cylinder. Let C ⊃ C ′ denote the set of all generalized n-cylinders in Σ.

Now define a set function τ : C → R≥0 by τ(E) = c(1E) for all E ∈ C . Note that τ is
well-defined since 1E ∈ Lip(Σ) for each E ∈ C . Also, τ is non-negative since c(f) is real and
non-negative whenever f is.

Suppose {En}n∈N is a disjoint collection of sets in C with ∪n∈NEn ∈ C . We claim that c(1∪En) =∑
n∈N c(1En). To see this, note that

c(1∪En) = lim
k→∞

λ−k
∫

Σ̊k

∑
n∈N

1En dm = lim
k→∞

∑
n∈N

λ−k
∫

Σ
L̊ k
ϕ1En dm,

where the interchange of the sum and integral is justified by the monotone convergence theorem.
Note that the sequence (ak,n)k∈N, where ak,n = λ−k

∫
Σ L̊ k

ϕ1En dm, is uniformly (in both n and
k) bounded above by C3, where C3 is from Corollary 4.5. Thus, by the dominated convergence
theorem,

lim
k→∞

∑
n∈N

ak,n =
∑
n∈N

lim
k→∞

ak,n.

In other words,

c(1∪En) =
∑
n∈N

lim
k→∞

λ−k
∫

Σ
L̊ k
ϕ1En dm =

∑
n∈N

c(1En).

It follows that τ(∪En) =
∑

n∈N τ(En) and so τ is countably additive. It follows as a consequence
of the Caratheodory extension theorem that τ extends uniquely to a positive Borel measure mH

on Σ (see for example [P, Chapter 2]). �

Proposition 5.2. ∀f ∈ Lip(Σ)

∫
Σ
f dmH = lim

k→∞
λ−k

∫
Σ̊k
f dm = c(f).

Proof. We know this formula holds when f is the characteristic function of a generalized cylinder.
As a first step, suppose that f =

∑
n∈N an1En , where {an}n∈N ⊆ C is bounded and {En}n∈N is a

disjoint collection of sets in C . We claim that the proposition holds in this case.
Indeed, since

∑
n∈N an1En is bounded by supn{|an|}, it follows from the dominated convergence

theorem that ∫
Σ
f dmH =

∑
n∈N

∫
Σ
an1En dmH =

∑
n∈N

lim
k→∞

λ−k
∫

Σ
anL̊

k
ϕ1En dm.
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Since λ−kL̊ k
ϕ1En ≤ C3, another application of the dominated convergence theorem gives:∑

n∈N
lim
k→∞

λ−k
∫

Σ
anL̊

k
ϕ1En dm = lim

k→∞

∑
n∈N

λ−k
∫

Σ
anL̊

k
ϕ1En dm.

Thus,
∫

Σ f dmH = limk→∞ λ
−k ∫

Σ̊k f dm.
The proof of the proposition will be complete once we prove the following claim: Any Lipschitz

function f on Σ is the uniform limit of a sequence (gn)n∈N satisfying gn =
∑

k∈N ak1En,k , where
{En,k}k∈N is the collection of all n-cylinders and {ak}k∈N ⊆ C lies in a disk of radius |f |∞.

Fix f ∈ Lip(Σ). For each n, k ∈ N, let yEn,k be an arbitrary point in En,k. Define gn : Σ→ R by

gn =
∑
k

f(yEn,k)1En,k .

If x ∈ En,k, then

|f(x)− gn(x)| = |f(x)− f(yEn,k)| ≤ Lip(f)θn.

It follows that gn → f uniformly in Σ.
We can now compute

∫
Σ f dmH as

(5.1)

∫
Σ
f dmH = lim

n→∞

∫
Σ
gn dmH = lim

n→∞
lim
k→∞

λ−k
∫

Σ̊k
gn dm,

where
∫

Σ gn dmH = limk→∞ λ
−k ∫

Σ̊k gn dm by the first step of the proof. We claim that we can
interchange the limits.

Fix n ∈ N and observe that |gn|∞ ≤ |f |∞. Then∣∣∣∣λ−k ∫
Σ̊k
gn dm− lim

k→∞
λ−k

∫
Σ̊k
gn dm

∣∣∣∣ =

∣∣∣∣λ−k ∫
Σ

L̊ k
ϕ gn dm−

∫
Σ

Πλ(gn) dm

∣∣∣∣
≤ λ−k

∣∣∣∣∫
Σ
Rk(gn) dm

∣∣∣∣ ≤ |f |C0 · λ−k‖Rk‖.

Thus, λ−k
∫

Σ̊k gn dm→ limk→∞ λ
−k ∫

Σ̊k gn dm uniformly (with respect to n). It follows that we can
interchange the limits in (5.1) to obtain∫

Σ
f dmH = lim

k→∞
lim
n→∞

λ−k
∫

Σ̊k
gn dm = lim

k→∞
λ−k

∫
Σ̊k
f dm.

�

5.1. Some properties of mH . First, we determine the support of mH .

Lemma 5.3. The support of mH equals Σ̊∞.

Proof. Observe that Σ \ Σ̊∞ is equal to the union of all cylinders that end in a state that is part of
the hole. We will show that all such cylinders have mH -measure zero. Suppose [i0, . . . , in−2, h] ⊆ Σ

is one such cylinder, where [h] ⊆ H. If k ≥ n, then clearly [i0, . . . , in−2, h] ∩ Σ̊k = ∅. Thus,

mH([i0, . . . , in−2, h]) = lim
k→∞

λ−k
∫

Σ̊k∩[i0,...,in−2,h]
dm = 0.

It follows that mH(Σ \ Σ̊∞) = 0 so the support of mH is contained in Σ̊∞.

Now suppose U is open and U∩Σ̊∞ 6= ∅. Fix x ∈ U∩Σ̊∞ and fix n ∈ N such that [x0, . . . , xn−1] ⊆
U . We claim that for each k sufficiently large mH([x0, . . . , xn−1] ∩ Σ̊k) is uniformly bounded away
from zero. Note first that 1[x0,...,xn−1]∩Σ̊k = 1[x0,...,xn−1] · 1Σ̊k ∈ Lip(Σ) for all k ∈ N. Also, since



20 M.F. DEMERS, C. IANZANO, P. MAYER, P. MORFE, AND E.C. YOO

1σ([xn−1]) is log-Lipschitz and bounded in C0-norm, by the proof of Proposition 4.3 there exist N ∈ N
and C∗ > 0 such that L̊ N

ϕ 1σ([xn−1]) ≥ C∗. Now

mH([x0, . . . , xn−1] ∩ Σ̊k) = lim
j→∞

λ−j
∫

Σ̊j
1[x0,...,xn−1]∩Σ̊k dm = lim

j→∞
λ−j

∫
Σ̊j

1[x0,...,xn−1] dm

= lim
j→∞

λ−j
∫

Σ
L̊ j
ϕ1[x0,...,xn−1] dm = lim

j→∞
λ−j

∫
Σ

L̊ j−n
ϕ 1σ([xn−1]) dm

= lim
j→∞

λ−(j−n−N)

∫
Σ

L̊ j−n−N
ϕ

(
λ−(n+N)L̊ N

ϕ 1σ([xn−1])

)
dm

≥ C∗λ−(n+N)mH(Σ) > 0

Taking the limit as k →∞, we see that mH([x0, . . . , xn−1]∩Σ̊∞) > 0. It follows that mH(U∩Σ̊∞) >

0, and so the support of mH equals Σ̊∞. �

Next, we show that mH is conformal for the renormalized punctured potential ϕH − log(λ).

Lemma 5.4. λ−1L̊ ∗
ϕmH = mH . In particular,

∀f ∈ Lip(Σ), ∀A ∈ B(Σ)

∫
σ−1(A)

f dmH = λ−1

∫
A

L̊ϕf dmH ,

where B(Σ) denotes the sigma-algebra of Borel subsets of Σ.

Proof. We show that λ−1L̊ ∗
ϕmH = mH . Suppose E ∈ C . Then

λ−1L̊ ∗
ϕmH(E) = lim

k→∞
λ−(k+1)

∫
Σ

L̊ k+1
ϕ 1E dm =

∫
Σ

1E dmH = mH(E).

Since the measures agree on n-cylinders, they agree as Borel measures on Σ.
If f : Σ→ R is Borel measurable and A is a Borel set, then∫

σ−1(A)
f dmH =

∫
Σ
f · 1A ◦ σ dmH =

∫
Σ
λ−1L̊ϕ(f · 1A ◦ σ) dmH =

∫
A
λ−1L̊ϕf dmH .

�

5.2. Construction of Gibbs Measure. Let ν be the positive Borel measure defined by

∀A ∈ B(Σ) ν(A) =

∫
A
g dmH .

Proposition 5.5. ν is a σ-invariant probability measure on Σ whose support is Σ̊∞. Moreover,
for each f ∈ Lip(Σ),

ν(f) = lim
n→∞

λ−n
∫

Σ̊n
fg dm.

Proof. ν is a probability measure since ν(Σ) = c(g) = 1. Moreover, since the support of mH is Σ̊∞

and g is bounded away from 0, the support of ν is also Σ̊∞.
Now fix a nonempty cylinder En = [i0, . . . , in−1]. Then by Lemma 5.4,

ν(σ−1(En)) =

∫
σ−1(En)

g dmH = λ−1

∫
En

L̊ϕg dmH =

∫
En

g dmH = ν(En).

Since ν agrees with σ∗ν on cylinders, it follows that ν = σ∗ν and so ν is σ-invariant.
Finally, since fg ∈ Lip(Σ) whenever f ∈ Lip(Σ), we have by Proposition 5.2,

ν(f) =

∫
fg dmH = lim

n→∞
λ−n

∫
Σ̊n
fg dm.

�
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The following proposition implies that in fact ν is a Gibbs measure with respect to the potential
ϕ.

Proposition 5.6. There exists a constant CG > 0 such that for any n-cylinder En ⊂ Σ̊n and any
y ∈ En,

C−1
G exp(Snϕ(y))λ−n ≤ ν(En) ≤ CG exp(Snϕ(y))λ−n.

Proof. Fix an n-cylinder En = [i0, . . . , in−1] ⊂ Σ̊n and let w ∈ En.

Lower bound. For any x ∈ Σ̊ and k > n,

L̊ k
ϕ (1Eng)(x) =

∑
y∈σ̊−k(x)∩En

g(y)eSkϕ(y)

≥ e−CdeSnϕ(w)
∑

y∈σ̊−k(x)∩En

g(y)

g(σn(y))
· g(σn(y))eSk−nϕ◦σ

n(y)

≥ C−1
g e−CdeSnϕ(w)

∑
y∈σ̊−k(x)∩En

g ◦ σn(y)eSk−nϕ◦σ
n(y)

= C−1
g e−CdeSnϕ(w)

∑
z∈σ̊−(k−n)(x)∩σ([in−1])

g(z)eSk−nϕ(z)

= C−1
g e−CdeSnϕ(w)L̊ k−n

ϕ (1σ([in−1])g)(x)

where Cg = sup{g(x) |x∈Σ}
inf{g(x) |x∈Σ̊}

. The second-to-last equality follows from the fact that the restriction

σn : σ̊−k(x) ∩ [i0, . . . , in−1]→ σ̊−(k−n)(x) ∩ σ([in−1])

is a bijection. Thus,

λ−k
∫

Σ̊k
1Eng dm = λ−k

∫
Σ

L̊ k
ϕ (1Eng) dm

≥ C−1
g e−CdeSnϕ(w)λ−k

∫
Σ

L̊ k−n
ϕ (1σ([in−1])g) dm

= C−1
g e−CdeSnϕ(w)λ−n · λ−(k−n)

∫
Σ

L̊ k−n
ϕ (1σ([in−1])g) dm

Note that since σ([in−1]) is a union of 1-cyinders, we have

Lip(log(1σ([in−1])g)) ≤ K.

Thus, it follows as in the proof of Proposition 4.3 that we can find N ∈ N and BN > 0 such that
L̊ N
ϕ (1σ([in−1])g) ≥ BN . Then using Corollary 4.5, we have for k > N ,

λ−kL̊ k
ϕ (1σ([in−1]g) �Σ̊≥ BNλ

−N · λ−(k−N)L̊ k−N
ϕ 1 �Σ̊≤ BNλ

−NC−1
3 .

It follows that ν(σ([in−1])) > 0. Indeed, due to (H), we can remove the dependence of the lower
bound on in−1: Set

κ = inf{ν(σ([i])) : i ∈ S} ≥ min{ν([j]) : j ∈ ΛH} > 0,

where the last expression is positive since ΛH is finite and the support of ν is Σ̊∞. It follows that

ν(En) ≥ C−1
g e−CdeSnϕ(w)λ−nκ,

which is the required lower bound.
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Upper bound. Let w ∈ En ⊂ Σ̊n as before. If x ∈ Σ, then

L̊ k
ϕ (1Eng) (x) =

∑
y∈σ̊−k(x)∩En

g(y)eSkϕ(y) ≤ eCdeSnϕ(w)
∑

y∈σ̊−k(x)∩En

g(y)eSk−nϕ◦σ
n(y)

≤ CgeSnϕ(w)+Cd
∑

y∈σ̊−k(x)∩En

g(σn(y))eSk−nϕ(σn(y)).

By our observation above of the injectivity of σn on n-cylinders, we can make the substitution
z = σn(y) and obtain

L̊ k
ϕ (1Eng) (x) ≤ CgeSnϕ(w)+Cd

∑
z∈σ̊−(k−n)(x)∩σ([in−1])

g(z)eSk−nϕ(z)

= Cge
Snϕ(w)+CdL̊ k−n

ϕ (1σ([in−1])g)(x).

This implies that

lim
k→∞

∫
Σ
λ−kL̊ k

ϕ (1Eng) dm ≤ CgeSnϕ(w)+Cdλ−n · lim
k→∞

∫
Σ
λ−(k−n)L̊ k−n

ϕ

(
1σ([in−1])g

)
dm

≤ CgeSnϕ(w)+Cdλ−n · lim
k→∞

∫
Σ
λ−(k−n)L̊ k−n

ϕ g dm.

Therefore, we conclude that ν(En) ≤ CgeSnϕ(w)+Cdλ−n. �

5.3. Proof of Theorem 2.2. We begin by defining the Gurevich pressure of a locally Lipschitz
continuous potential ϕ. Define the partition function Zn(ϕ, a) on states a ∈ S by

Zn(ϕ, a) =
∑

σn(x)=x

1[a](x)eSnϕ(x).

The Gurevic pressure P (ϕ) of a topologically mixing topological Markov chain (Σ, σ) is then defined
by

P (ϕ) = lim
n→∞

1

n
logZn(ϕ, a).

The Gurevic pressure always exists (though it may equal ∞) and is independent of the choice of
state a. When |Lϕ1|∞ <∞, the Gurevic pressure is finite [S1, Theorem 1].

We now verify the items of Theorem 2.2. Item (c) follows from Lemmas 5.3 and 5.4 together
with Proposition 5.5. Proposition 5.5 also proves the first half of (b).

It follows from Proposition 5.6 together with [S1, Theorem 8], that ν is an equilibrium state for

(Σ̊∞, σ) for the potential ϕH − log λ. Moreover, the Gurevich pressure PG(ϕH) = log λ. We thus
have,

log λ = PG(ϕH) = sup

{
hη(σ) +

∫
ϕH dη : η ∈M,

∫
−ϕH dη <∞

}
,

where hη(σ) denotes the metric entropy of σ with respect to η. Moreover, ν is the unique nonsingular
invariant measure which attains the supremum. (Nonsingular in this context means that η ◦ σ is
absolutely continuous with respect to η.) This proves item (a) as well as the escape rate formula
in item (b). In order to complete the proof of (b), we must prove that ν enjoys exponential decay
of correlations on functions in Lip(Σ).

Let f1, f2 ∈ Lip(Σ). It follows that f2 ◦ σn ∈ Lip(Σ) for each n ∈ N. Thus,

(5.2)

∫
f1 f2 ◦ σn dν = lim

k→∞
λ−k

∫
Σ̊k
f1 f2 ◦ σn g dm = lim

k→∞
λ−k

∫
Σ̊k−n

L̊ n
ϕ (f1g) f2 dm.

Notice also that ν(f1) = c(f1g), while for each n ∈ N,

ν(f2) = lim
k→∞

λ−k+n

∫
Σ̊k−n

f2 g dm.
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Using these observations together with (5.2), we use Theorem 2.1(d) to estimate,∣∣∣∣∫ f1 f2 ◦ σn dν − ν(f1)ν(f2)

∣∣∣∣ = lim
k→∞

∣∣∣∣λ−k+n

∫
Σ̊k−n

[λ−nL̊ n
ϕ (f1g)− c(f1g)g] f2 dm

∣∣∣∣
≤ lim

k→∞
Cτn‖f1g‖Lipλ

−k+n

∫
Σ̊k−n

|f2| dm

≤ C ′τn‖f1‖Lipν(|f2|),

which completes the proof of item (b).
It remains to prove (d) of Theorem 2.2. Let f ∈ Lip(Σ) with f ≥ 0. By Lemma 4.13, it suffices

to show that c(f) > 0 if and only if ν(f) > 0. Now c(f) = mH(f) while ν(f) = mH(gf). Thus the
equivalence of c(f) and ν(f) follows immediately from the fact that g is bounded away from 0 and
infinity.
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